
Basics of the CANopen
and CANopen FD protocol

Mechanisms, Functions, Parameters
and Implementation

CANOPEN KNOW-HOW

2

CANopen and CANopen FD protocol

CANopen is a higher-layer protocol based on CAN
(Controller Area Network), which enables the com-
munication between devices of different manufac-
turers and guarantees interchangeability of devices.

The CANopen profile family defines a standardized
application for distributed systems based on CAN.
CANopen was developed within the CAN-in-Au-
tomation (CiA) international users‘ and manufac-
turers‘ group and is standardized as CENELEC EN
50325-4 since December 2002. Soon after its initial
release in 1996, CANopen found broad acceptance,
especially in Europe where it can be considered the
leading standard for CAN based system solutions.

Functionality, parameters and access to process
data from standard devices, such as I/O modules,

CANopen and CANopen FD protocol
standard and mechanisms

drives, controllers or encoders, are defined by
device profiles, so devices from different manufac-
turers can be accessed via the bus in exactly the
same manner. As a result, CANopen offers a very
high degree of vendor independence, as devic-
es are interoperable and exchangeable. On one
hand CANopen is standardized, but on the other,
it is open to a near unlimited field of applications,
including:

	Machine control
	 Factory automation
	 Laboratory automation
	Transportation and traffic
	Utility vehicles
	Building automation
	Medical Systems

CONTENT

CANopen / CANopen FD Introduction.............................. 3

CANopen basics... 4
CANopen Application layer basics.................................... 4
CANopen and the OSI reference model........................... 5
CANopen device model.. 7
Network management (NMT).. 7
Heartbeat services.. 9
SDO services... 10
PDO services... 11
EMCY service... 14
Pre-defined connection set.. 15
Device and system configuration.................................... 16
Device and application profiles...................................... 17

2

CANopen FD basics.. 18
CANopen FD application layer basics............................. 18
CANopen FD and the OSI reference model.................... 19
Field device with CANopen FD interface........................ 20
Network management (NMT).. 21
Heartbeat services.. 22
USDO services... 23
PDO services... 25
EMCY service... 27
Pre-defined connection set.. 29
Device and system configuration.................................... 30
Device and application profiles...................................... 30

Implementation of CANopen and CANopen FD............. 32
Module based implementation...................................... 32
Protocol software based implementation...................... 32
Products from HMS for implementing CANopen........... 33

3

CANOPEN / CANOPEN FD
INTRODUCTION

CANopen provides service and protocol specifi-
cations and device and application profile speci-
fications. Devices compliant with this set of spec-
ifications are interoperable with other CANopen
devices; implementing the same functionality even
enables the interchangeability of products.

CANopen was developed in 1993 within a Europe-
an research project under the leadership of Bosch,
with a research team comprising universities and
companies from different European countries.

In 1994, the developed CANopen specifications
were handed over to the CAN in Automation (CiA)
international users’ and manufacturer’s group.
Since then, the non-profit association has main-
tained the documents and has developed and en-
hanced the communication system. Nowadays, the
CANopen specification comprises more than 20,000
pages of specification, including device and applica-
tion profiles for different industries.

Besides embedded machine control, CANopen was
initially used in medical devices, such x-ray appara-
tus, computer-tomography systems, etc. In the late
90s, CANopen made its way into off-road vehicles,
followed by users in the elevator rail vehicle indus-
tries. Applications we also seen in deeply embed-
ded control systems, where a typical application
might be the control of sliding or rotating doors. An-
other example of deeply embedded networks sees
CANopen used as backbone bus system in modular
I/O devices.

Applications for CANopen are nearly limitless.
Wherever more than two micro-controller-based
units need to communicate, CANopen is a can-
didate. The robustness and reliability of the CAN
lower layers, combined with the flexibility of the
CANopen application layer and the interoperability
provided by the CANopen profiles, makes CANopen
one of the most successful embedded control net-
works.

One of the reasons for CANopen’s success is the
relative stability of the base services and protocols.
There has been just one major improvement from
version 3.0 to version 4.X – not considering the
two first versions in the prototyping phase (1994 to
1995). This has reduced the investment overheads
for CANopen device suppliers and system designers.

CANopen mapped on Classical CAN hardware does
has some limitations: The bandwidth at given net-
work length is limited, as well as the payload in a
single CAN frame. These limits can be overcome us-
ing the CAN FD data link lower layers, which support
higher bit-rates (more than 1 Mbit/s) and the CAN
FD frames can contain up to 64 bytes instead of 8
up to byte in Classical CAN frames.

The CANopen FD application layer – released in
2017 – makes use of this larger payload by introduc-
ing new communication services. CANopen FD is
the successor of Classic CANopen providing a simi-
lar robustness and reliability and with the enhanced
communication services CANopen FD is ready for
new applications, including Industrial Internet of
Things (IIoT) support.

CANopen and CANopen FD protocol

4

CANOPEN APPLICATION LAYER BASICS

CiA 301 describes the basic communication services
and protocols mapped to the Classical CAN data link
layer. CANopen services are also mapped to other
communication technologies, such as EtherCAT and
Powerlink.

The specified communication services and the relat-
ed protocols (given in brackets) comprise:

	Network management (NMT and Heartbeat)
	Device configuration (SDO)
	Real-time transmission of process data (PDO)
	Node synchronization (SYNC and TIME)
	Diagnostics (EMCY and SDO)

The related CANopen protocols require the as-
signment of a unique 7-bit node-ID by the system
designer, in order to guarantee that all protocols
use a unique CAN-ID. This can be achieved by dif-
ferent methods. Most common is the assignment
by means of DIP switches. But there are methods,
such as dedicated configuration interfaces (e.g. a
display). If the CAN interface of the CANopen device
is used, the layer setting services (LSS) as defined in
CiA 305 should be used.

CANopen also requires the implementation of an
object dictionary, which lists all parameters repre-
senting the CANopen device functionality, including
process data, configuration options, and diagnostic
information. This object dictionary is well struc-

tured, and each parameter is addressable by means
of a 16-bit index and an 8-bit sub-index. This 24-bit
address is used by some communication services
as a multiplexer to overcome the limitation of just
2048 identifiers provided by the CAN data link layer.
This is effectively a prolongation of the 11-bit CAN-
ID used by default for all CANopen protocols.

CANopen basics

Object dictionary structure

The 16-bit index range is structured as follows:

000016 Reserved
000116 to 025F16 Data type parameters
026016 to 0FFF16 Reserved
100016 to 1FFF16 Communication parameters
200016 to 5FFF16 Manufacturer-specific parameters
600016 to 67FF16 Logic device 1 parameters
680016 to 6FFF16 Logic device 2 parameters
700016 to 77FF16 Logic device 3 parameters
780016 to 7FFF16 Logic device 4 parameters
800016 to 87FF16 Logic device 5 parameters
880016 to 8FFF16 Logic device 6 parameters
900016 to 97FF16 Logic device 7 parameters
980016 to 9FFF16 Logic device 8 parameters
A00016 to AFFF16 Network variables
B00016 to BFFF16 System variables
C00016 to FFFF16 Reserved

5

CANopen and CANopen FD protocol

Each of these parameters can have up to 256
sub-parameters addressable by means of the 8-bit
sub-index. The sub-parameter 0016 is used to in-
dicate the highest implemented sub-parameter in
case of arrays (all sub-parameters are of the same
data type) or records (sub-parameters are of differ-
ent data types). Parameters specified as variables
support just the sub-parameter 0016.
The CANopen object dictionary supports up to
eight logical devices, as a result you can implement
multiple device profiles in a single CANopen device.
This could be a motion controller with eight motor
instances or a motion controller with additional I/O
functionality.

List of abbreviations

CAN Controller area network
EMCY Emergency object
ID Identifier
I/O Input/output
LSS Layer setting services
NMT Network management
PDO Process data object
SDO Service data object
SYNC Synchronization object
TIME Network time object

CANOPEN AND THE OSI
REFERENCE MODEL

The Open System Interconnection (OSI) refer-
ence model from ISO specifies seven layers. The
CANopen application layer and communication
profile – as specified in CiA 301 or EN 50325-4
(equivalent to CiA 301 version 4.0) – mainly cover
the transport layer and the application layer. The
presentation, session, and network layers are not
used.

The data link layer complies with ISO 11898-1 and
uses data frames in CBFF (Classical Base Frame For-
mat) by default, and optionally data frames in CEFF
(Classical Extended Frame Format). Remote frames
are allowed but are not recommended at all.

By default, CANopen uses the CAN physical layer as
defined in ISO 11898-1 (physical signaling sub-layer)
and in ISO 11898-2 (physical media access sub-lay-
er). This enables bit-rates up to 1 Mbit/s. In order to
improve interoperability, CiA 301 limits the bit-rates
to the following values and sample-point ranges
(given in percentage of the bit-time):

	1 Mbit/s (75 % to 90 %)
	800 kbit/s (75 % to 90 %)
	500 kbit/s (85 % to 90 %)
	250 kbit/s (85 % to 90 %)
	125 kbit/s (85 % to 90 %)
	50 kbit/s (85 % to 90 %)

It is recommended that daisy-chained line topol-
ogies or line topologies with short stubs are used.
Bus ends of the network cable needs to be termi-
nated by resistors (nominally 120 Ω each). The net-
work length at a given bit-rate depends not only on
the configured sample, but also, for example, on the
cables used and non-terminated stubs. In 1-Mbit/s
networks you can achieve about 25 m. Using 500
kbit/s, network lengths of up to 125 m are possible.
In 250 m networks, bit-rates of up to 250 kbit/s can
be reached. Setting the bit-rate to 125 kbit/s allows
up to 500 m and at 50 kbit/s, the maximum length
is 1 km.

Optionally, transceivers compliant to ISO 11898-3
with low-power capabilities and fault-tolerant func-
tions are allowed, but not recommended for new
designs. They are limited to 125 kbit/s.

6

CANopen and CANopen FD protocol

The network designer must assign unique CANopen
node-IDs to each connected CANopen device.
Additionally, all CANopen nodes must use the same
bit-rate.

The CANopen profile specifications defining the pro-
cess data, configuration parameters, and diagnostic
information are above the OSI reference model.
This also includes the mapping of process data into
PDOs.

CiA 302-7 specifies a network layer. The described
protocols allow the access of CANopen devices from
another CANopen network segment (remote SDO
services). This can be used to configure a complex
CANopen system, comprising several segments,
from a single point. This network layer can be also
used for diagnosis purposes (remote EMCY ser-
vices).

Application level User program(s)

Data level CiA 4XX: Device and application profiles

OSI layers

Application layer CiA 301: NMT, Heartbeat, SDO, PDO, SYNC, EMCY, TIME

Presentation layer CiA 301: Data types ans encoding rules

Session layer Not applicable

Transport layer CiA 301: Segmented SDO

Network layer (CiA 302-7: SDO and EMCY routing, PDO bridging)*

Data link layer ISO 11898-1

Physical layer ISO 11898-2, CiA 301 (bit-timing), CiA 303-1 (cable and connectors)

* Only necessary in multiple CANopen network architectures

Repeater, bridge/switch, router, and gateways

CANopen applications can make use of CAN repeat-
ers (OSI layer 1). Repeaters enable more CAN nodes
in one CANopen segment or longer network lengths
due to the refreshing of the bus signals.

CAN bridges or switches (OSI layer 2) can be used to
separate CANopen network systems into different
segments, in order to limit impacts or to reduce
busloads. For this purpose, the system variables as
specified in CiA 302-7 are used.

Routers (OSI layer 3), compliant to CiA 302-7, can be
used to forward SDO messages and EMCY messages
to other network segments.

If connections to other network technologies are
needed, gateways can be used. The CiA 309 series
specifies the access from TCP/IP-based networks to
CANopen networks. This includes PROFINET (CiA
309-4) and Modbus-TCP (CiA 309-2). CANopen also
provides gateway specifications for AS-i (CiA 446)
and IO-Link (CiA 463 series, under development).

OSI reference model

7

CANopen and CANopen FD protocol

CANOPEN DEVICE MODEL

The CiA 301 specification uses a device model as
shown below. It includes a CAN entity, which com-
prises the CAN transceiver and the CAN protocol
controller. The CAN protocol controller is in most
cases on-chip of the micro-controller – sometimes
named host controller. The CANopen protocol
stack implements the CANopen protocols and the
CANopen object dictionary. And there is the pro-
file and application program of the CANopen de-
vice, which may comply with one of the CANopen
profiles specified by CiA. Of course, the CANopen
device may implement just manufacturer-specific
profiles.

The CANopen device’s communication and applica-
tion parameters accessible by means of the object
dictionary are represented electronically in the
Electronic Data Sheet (EDS). There are two versions:

CAN entity CANopen
protocol entity

CANopen object
dictionary

Transceiver and
CAN protocol
controller

NMT
Heartbeat
Server SDO
(Client SDO)
TPDO
RPDO
SYNC
EMCY
TIME

Communication
parameter

Process data

Configuration
parameter

Diagnostic data

Profiles and
application
program

CA
N

 b
us

 li
ne

I/
O

 li
ne

s

...

The CANopen device model

This means, homogeneous CANopen network sys-
tems and heterogeneous network systems are sup-
ported by CANopen specifications. The CANopen
router function requires the assignment of a unique
8-bit network ID, which, considering that 127 nodes
can reside in one network segment, allows the
addressing of thousands of CANopen devices in
network system.

one is using an ASCII format (CiA 306) and another
is using an XML schema (CiA 311). Both files provide
the parameter and sub-parameter attributes. This
includes index and sub-index, name, object code,
data type, category (or entry category), access,
PDO mapping, value range, and default value. EDS
are used to teach device and system configuration
tools the provided functionality. Such tools can also
be implemented in the host controller with NMT
master capability.

NETWORK MANAGEMENT (NMT)

CANopen network management is based on a mas-
ter/slave approach. The device with NMT master
functionality controls the CANopen NMT slave de-
vices. Each NMT slave can be in one of three static
states:

	Pre-operational: All CANopen services can be
used, except PDO services,

	Operational: All CANopen services can be used,
or

	 Stopped: No CANopen services can be used,
except NMT and Heartbeat

There are additional temporary states, which the
device transmits automatically after power-on and
after reset. The state diagram provides details on

8

CANopen and CANopen FD protocol

the possible state transitions. Those transitions are
commended by the NMT master or device internal-
ly by the application.

The NMT commands from the NMT master devices
are confirmed at the application program level by
means of a Heartbeat message. The NMT command
message is a two-byte message. One byte contains
the command and the other the addressed node-ID.
A node-ID of “0” indicates a broadcast command,
meaning that all nodes shall perform the command.
It is mapped to the CAN data frame with CAN-ID
“0”, which is the highest prior one. The above-men-
tioned confirmation is a one-byte message provid-
ing the current state (pre-operational, operational,
or stopped) of the related NMT slave device. It is
mapped, depending on the node-ID of the trans-
mitting device, to a CAN data frame with a CAN-ID
of 80016 plus node-ID. The Heartbeat message is
sent periodically with the user-configurable heart-
beat-producer-time given in the object dictionary.

After power-on, the CANopen NMT slave transits
automatically into the NMT pre-operational state
and waits to be configured (optional) and started by
the NMT master device. It is also possible to config-
ure an NMT slave device to be self-starting. This is
required by some CANopen applications. There are
two reset commands: one simply resets the com-

munication parameters to the default or the con-
figured values; the other resets the communication
and the profile parameters. After the reset proce-
dure, the NMT slave device transitions automatical-
ly to the NMT pre-operation state.

The NMT stopped state can be used to stop a de-
vice communicating SDO and PDO messages. It just
accepts the NMT message and produces the Heart-
beat message. In some cases, it is desirable to have
the devices not transmit any messages. To achieve
this, the heartbeat-producer-time in the object dic-
tionary needs to be configured to “0”.

The legacy option to remotely request the Heart-
beat message by means of a CAN remote frame
(so-called Node/Life guarding) is no longer recom-
mended. This approach also used a life-timer imple-
mented in each NMT slave device. When it expires
without receiving the appropriate CAN remote
frame from the NMT master device, the NMT slave
considers that the NMT master device is no longer
available, and behaves as programmed for this case.

NMT flying master

In mission-critical applications, a single entity is not
acceptable. As a result, CiA 302-3 specifies the NMT
flying master approach.

There are several services that allow a second
NMT master capable device to function as an NMT
master device, when the original NMT master is not
available. When the original NMT master comes
back, it requests to become the active NMT mas-
ter. This NMT flying master functionality is used in
maritime electronics and medical devices. Sub-sea
trees on the ocean floor implement redundant NMT
master devices too, using the NMT flying master
protocols.

NMT slave state machine

Initialization

Power on

Pre-operational
(Configuration state)

Operational

Stopped

9

CANopen and CANopen FD protocol

HEARTBEAT SERVICES

CANopen network management uses a Heartbeat
message as a confirmation of the NMT command
sent by the NMT master device. Additionally, any
CANopen device can use it to check the availability
of any other CANopen device. This is necessary in
all cases in which CANopen devices transmit PDO
messages only on state-of-change events. The
subscriber of such PDO messages would not know if
there is no event or if the device is no longer avail-
able. The reception of a Heartbeat message from
the relevant device indicates that it is still alive.

The transmission period is configurable by means
of the heartbeat-producer-time parameter in the
object dictionary of the transmitting device. The
indication that a device is missing can be configured
in any interested device by means of the heart-
beat-consumer-time array. As a rule of thumb, the
consumer time should be twice the producer time.
The producer and consumer time configurations are
highly application specific.

In some applications, devices crosscheck each other
by consuming the Heartbeat messages. Sensors
normally do not consume Heartbeat messages they
just produce their PDO messages and their Heart-
beat messages to indicate, respectively, that they
are still alive and to confirm the NMT command.

System designers are responsible for the configura-
tion of the Heartbeat timing. There could be appli-
cation-specific requirements that a device missing
an essential device stops the production of its own
Heartbeat message. System designers should take
care that the overall availability is still sufficient.

The 1-byte Heartbeat message uses a CAN data
frame with the ID 70016 plus producer node-ID. The
one-byte content indicates the NMT status. This
means, the consumer can also detect that a device
has not sent PDO messages because of its NMT
state. This can be evaluated in the consumer’s appli-
cation program.

Heartbeat message content

The Heartbeat message is mapped to a CAN data
frame with a 1-byte data field. This byte provides
the NMT status of the CANopen device. It could
be in pre-operational state (7F16), operational state
(0516), or stopped state (0416). In the pre-operational
state, the CANopen device does not process PDOs
and in the stopped state it just supports the NMT
message and sends its Heartbeat. In the operational
state, all CANopen functions are provided.

If the CAN data frame contains 0016, it is interpreted
as Boot-up message indicating that this CANopen
device has just entered the network. This happens
after initial power-on, a power-cycle, and after
application and communication reset. The next CAN
data frame with the same CAN-ID and content not
equal to 0016 is interpreted as Heartbeat message.
The NMT master device uses the Heartbeat mes-
sage as a confirmation of its NMT commands.

Node state values:
0416 (Stopped), 0516 (Operational), 7F16 (Pre-operational)

Heartbeat protocol: When the configured heartbeat-consum-
er-time elapses, the application receives an indication and may
stop the production of its own Heartbeat message, because a
missing CANopen device could be critical for functionality.

Node state

Heartbeat
Producer

Node state

Heartbeat
Consumer(s)

Indication(s)Request

Heartbeat
event

Request Indication(s)

DLC = 1

CAN-ID: 70016 +
node-ID

CAN-ID: 70016 +
node-ID

Heartbeat
producer time
(101716) in ms

Heartbeat
producer time
(101616) in ms

10

CANopen and CANopen FD protocol

SDO SERVICES

CiA 301 specifies several SDO services. The main
purpose of these services is to read and write data
to one dedicated CANopen object dictionary ad-
dress.

The SDO client always has the initiative, sending
an SDO read or write request to the desired SDO
server. Therefore, SDO services are always con-
firmed. Read requests are confirmed by the SDO
data received from the SDO server. Write requests
are confirmed by means of SDO server messages in-
dicating that the SDO data is stored in the CANopen
object dictionary.

In case the SDO service cannot be handled cor-
rectly, either the SDO server or the SDO client may
send an SDO-abort message. The SDO-abort mes-
sage provides a 4-byte abort code, giving the user
information about the reason. It is not very helpful
to provide an abort code reporting a general error.
Therefore, CiA 301 specifies for some cases, which
abort code needs to be used.

SDO messages have a 4-byte SDO protocol over-
head containing the kind of service and the 24-bit
address of the object dictionary parameter to be
written or to be read. There are also some bits in
specific SDO protocol control bits, for example, a
toggle-bit indicating that the CAN data link layer has
not duplicated the transmitted message.

Some SDO services allow reading or writing of data
of any length. Because the CAN data frames provide
just an 8-byte payload (data field), the related SDO
transport layer protocol segments the SDO data
on the sender side and reassembles them on the
receiver side. Each CAN data frame sent by the SDO
client is confirmed by the SDO server by means of a
CAN data frame.

There are two options to indicate the length of the
data to be transferred: the size or an end indica-

tion (last segment) both of which are provided in
the SDO protocol overhead. In order to reduce the
busload, SDO block services can be specified, which
do not confirm each individual segment, but instead
a block of segments. The block size and number of
segments is configurable.

All SDO services are mapped to CAN data frames
with an 8-byte length. If the SDO data is less than 4
bytes, no segmentation is needed. If the length ex-
ceeds four bytes, one of the appropriate SDO trans-
port protocols is used. In the initial CAN frame, the
SDO protocol overhead is four bytes. In the follow-
ing CAN frames just one byte is used for protocol
data. The remaining seven bytes contain SDO data.
If the SDO data is not entirely used, this is indicated
in the SDO protocol.

For each peer-to-peer SDO channel, client/server
relation, two CAN-IDs are needed: one for the cli-
ent-to-server request and the other for the serv-
er-to-client confirmation. Theoretically, all CANopen
devices can communicate with all other network
nodes by means of SDO services. However, this
would require many CAN-IDs. A fully meshed bidi-
rectional SDO communication for all 127 possible
nodes would require more than 500 CAN-IDs.

Originally, SDO services were intended to configure
or to diagnose a CANopen device. But SDO services
can also be used to transmit process data. The
system designer should consider that SDO services
increase the busload.

SDO protocol examples

There are several SDO protocols specified in CiA
301. In the 1-byte command specifier (CS) of the
SDO client, SDO server, and the SDO abort message,
three bits are used to indicate the used protocol. In
case of a SDO read service to the heartbeat produc-
er time (index 101716 and sub-index 0016) the SDO
client sends the following 8-byte value in the CAN
data field:

11

CANopen and CANopen FD protocol

CS:
4316

Index:
171016

Sub-Index:
0016

(Parameter) data:
00 00 00 0016

LSB MSB

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

CS:
??16

Index:
171016

Sub-Index:
0016

(Parameter) data:
A0 0F 00 0016

LSB MSB

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

CS:
2B16

Index:
171016

Sub-Index:
0016

(Parameter) data:
D0 0F 00 0016

LSB MSB

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

CS:
6016

Index:
171016

Sub-Index:
0016

(Parameter) data:
D0 0F 00 0016

LSB MSB

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

The SDO server responds with the following 8-byte value in its SDO server message indicating that the heartbeat
producer time is 4000 ms:

In case of a SDO write service to the same parameter configuring the heartbeat producer time to 2000 ms, the
SDO client sends the following 8-byte value in the CAN data field:

The SDO server confirms the SDO write request with the following 8-byte value in its SDO server message:

The SDO abort message always uses the CS value of
8016 independent of the source (SDO client or SDO
server). This is followed by the index and sub-index
as well as the 4-byte abort code.

PDO SERVICES

Process Data Object (PDO) services are used to
transmit process data. Process data could, for exam-
ple, measure values or commands, most of which
are time critical. The PDO service is not confirmed,
it is a producer/consumer service or, in other words,
a publisher/subscriber service.

PDO messages contain up to eight bytes of process
data. They are mapped to a single CAN data frame

using a CAN-ID determined by the COB-ID param-
eter given in the CANopen object dictionary. This
parameter is part of the PDO communication pa-
rameter set, which also comprises the transmission
type, which indicates the kind of transmission mode
respectively reception mode.

In general, CANopen allows the transmission of
PDOs asynchronously and synchronously. The trig-
gering of asynchronous PDOs depends on device-in-
ternal events. This can be the change of process
data transmitted in this PDO or the elapsing of the
event-timer – also part of the PDO communication
parameter set. The event-timer enables a periodi-
cal transmission of the PDO. But bear in mind, the
event-timer is a local timer and not synchronized
with the other CANopen device in the network.

12

CANopen and CANopen FD protocol

Synchronous transmission of PDOs is a unique fea-
ture of the CANopen application layer. It is based on
the periodical transmission of the SYNC message,
which uses a single CAN data frame with the default
high-priority CAN-ID of 8016. The SYNC message
triggers the transmission of all synchronous PDOs in
the CANopen network. This means, all sensors mea-
sure their values at the very same moment. They
are synchronized and, depending on the internal
delay and the priority of the PDO message, these
values are transmitted one after the other, but all
have been measured simultaneously.

In order to synchronize “fast” and “slow” CANopen
devices, synchronous TPDOs can be configured to
serve each second up to each 240th SYNC message.
But with this mechanism you cannot
group synchronous PDOs. For this fea-
ture, you need to use the SYNC message
with a 1-byte counter. Additionally, the
SYNC start value (sub-index 0616) needs
to be configured.

Now, you can start one group of synchro-
nous PDOs, for example, at the SYNC
counter value of 1 serving each second
SYNC message, and another group at the
SYNC counter value of 2 also serving each
second SYNC message. Of course, you
can configure more complex behavior, in
order to achieve a stable average bus-
load.

In order to synchronize outputs in dif-
ferent devices, the related RPDOs need
to be configured as synchronous. This
means, the received commands are not
performed immediately, but, instead,
when the next SYNC message is received.
At this time all devices perform the re-
quested actuation in synchronization.

Another unique feature is the PDO inhibit
time. This configurable time circumvents

the transmission of the PDO for the configured
period. This means, a high-priority PDO cannot oc-
cupy the entire bandwidth, and lower-priority PDOs
can win bus-arbitration. With this feature you can
design a predictable transmission of CoS-triggered
PDOs.

There is a second PDO parameter set specifying
the content of the PDO message. It is possible to
map multiple process data into one PDO message.
Bit-wise mapping is supported, but not recom-
mended. The related PDO mapping parameter array
in the object dictionary provides the object dictio-
nary addresses (16-bit index plus 8-bit sub-index),
where the process data value is stored (in case of
a Transmit-PDO) or should be stored (in case of a
Receive-PDO).

PDO

Index/sub-index Name Value
1A00 0116 1st application object 3001 00 2016

1A00 0216 2nd application object 3000 00 2016

3000 0016 Sensor A (UNSIGNED16) 23FF16

3001 0016 Sensor A (UNSIGNED16) 0200 000016

Index/sub-index Name Value
1603 0116 1st application object 3100 00 2016

1603 0216 2nd application object 3200 00 1016

:::

3100 0016 Gauge X (UNSIGNED16) 0200 000016

3200 0016 Gauge X (UNSIGNED16) 23FF16

0200 000016 23FF16

O
D

of
 re

ce
iv

in
g

no
de

O
D

of
 tr

an
sm

itti
ng

 n
od

e

The PDO mapping parameters on the transmitting and the receiving side
can differ, the example shows a sensor device transmitting two process
data and a display device with virtual gauges receiving the PDO.

13

CANopen and CANopen FD protocol

The system designer has several opportunities to
optimize the PDO communication to the application
requirements:

	PDO prioritization: Configuring the COB-ID
parameter with an appropriate CAN-ID value
changes the priority when accessing the CAN
network.

	PDO linking: Configuring the COB-ID parameter
of the RPDO to a dedicated CAN-ID value is a
subscription of the corresponding TPDO. It is
possible that multiple or all CANopen devices
subscribe to the same TPDO (multi-cast and
broadcast communication)

	PDO scheduling: Configuring the transmission
type sub-parameter of a TPDO determines the
sending behavior (e.g. change-of-state (CoS),
periodically, or synchronously). Configuring the
transmission type parameter of a RPDO deter-
mines the reception behavior (performing the re-
quired action immediately or with the reception
of the next SYNC message).

	PDO mapping: Configuring the PDO mapping
parameter set determines which process data
are mapped into the TPDO or where to enter the
received process data (RPDO).

Transmission type values

The transmission type sub-parameter determines
the scheduling of TPDO. In the case of a synchro-
nous transmission, the TPDO can be configured to
serve each received SYNC message, each second,
etc. Remotely requested TPDO should not be used,
due to a completely specified behavior (the reaction
on CAN remote frames can be implemented differ-
ently, for example).

Value Description
0016 Acyclic synchronous: Triggered when the SYNC mes-

sage is received and one of the mapped process data
has changed its value after the last transmission.

0116 to F016 Cyclic synchronous: Triggered when the SYNC message
is received (0116), each second SYNC message is re-
ceived (0216), etc. This supports fast and slow changing
process data.

F116 to FB16 Reserved
FC16 Synchronous RTR only: not recommended anymore
FD16 Asynchronous RTR only: not recommended anymore
FE16 Asynchronous: Triggered by an internal event (e.g.

change-of-state of one of the mapped process data
or elapsing of the event-timer or any other event).
The device manufacturer specifies the internal event
triggering the TPDO transmission.

FF16 Asynchronous: As before, but the CiA profile specifies
the internal event triggering the TDPO transmission.

PDO communication parameter set

This parameter set is a record. The first sub-pa-
rameter (highest sub-index supported) indicates
the sub-parameter with the highest number. The
COB-ID sub-parameter contains the CAN-ID to be
used and some additional protocol control bits. The
transmission type sub-parameter determines the
triggering (TPDO) or reception (RPDO) behavior).
The inhibit-time sub-parameter provides the time
in milliseconds when this TPDO is allowed to send
it again. The event timer sub-parameter specifies
the period in milliseconds of the TPDO transmission
respectively the time-out (missing) of a RPDO. The
SYNC start value sub-parameter indicates when the
synchronous TPDO is transmitted first. The value of
this sub-parameter needs to match with the value
given in the 1-byte SYNC message.

Sub-index Name Data type
0016 Highest sub-index sup. Unsigned8 (BYTE)

0116 COB-ID Unsigned32 (DWORD)

0216 Transmission type Unsigned8 (BYTE)

0316 Inhibit-time Unsigned16 (WORD)

0416 Reserved Not applicable

0516 Event timer Unsigned16 (WORD)

0616 SYNC start value Unsigned8 (BYTE)

PDO communication parameter set

Transmission type values

14

CANopen and CANopen FD protocol

EMCY SERVICE

The EMCY service is mapped to a producer/con-
sumer protocol. The producer sends the EMCY mes-
sage indicating some detected “errors”. The 8-byte
message contains the one-byte error register, the
two-byte emergency error code, and five bytes,
which are CANopen profile-specific. Some profiles
allow using the five bytes for manufacturer-specific
purposes.

The error register is a variable listed in the CANopen
object dictionary. It controls the Emergency state
machine. If any “error” is detected, the CANopen
device triggers the EMCY service and sends the
EMCY message. If further “errors” occur, the
CANopen device remains in the error state. Only if
all “errors” are recovered will the CANopen device
transition into the error-free state. The error state
behavior could be defined by CANopen profiles. In
the CiA 401 profile for modular I/O devices, the out-
puts are set to pre-defined values when the device
is in error state.

The detected misbehavior could be regarding the
CAN data link (e.g. recovered from bus-off state or
error passive mode indication), the CANopen ap-
plication layer (e.g. PDO length exceeded or RPDO
timeout), or the device’s application (e.g. mains

voltage or over-temperature). Besides some general
emergency error codes, the CANopen profiles speci-
fy additional ones.
The system designer needs to configure the EMCY
message consumers depending on the application
requirements. This is done by means of the emer-
gency consumer parameter listed in the CANopen
object dictionary. This array parameter contains all
COB-IDs of EMCY messages, which are consumed.
NOTE: The COB-ID is a 32-bit value providing the
CAN-ID of the data frames to be consumed, as well
as three control bits.

The reaction to the received EMCY messages is
highly application-specific. By default, the EMCY
message is transmitted in a CAN data frame with
a high-prior CAN ID: 8016 plus node-ID. The system
designer assigns a unique node-ID to the CANopen
devices. The EMCY COB-ID parameter, which con-
tains the CAN-ID to be used, can be configured by
means of an SDO write service to the CANopen
object dictionary.

Communication errors

CiA 301 specifies some detailed communication
error codes. They are related to the CAN data link
layer protocol as well as the CANopen application
layer protocols. The implementation of the follow-
ing error codes is recommended:

	 811016: CAN overrun (data frame lost)
	 812016: CAN protocol controller in error passive

mode (node cannot indicate bus errors, when it
is a receiver)

16-bit
error code

8-bit error register
(1001 0116)

Device-profile of manufacturer-
specific error information

Structure of the EMCY message: The 16-bit error code is specified in
CiA 301 and optionally in the implemented CiA device profile

Error
free

0

Error
occurred

KEY
0: No error detected
1: First error detected
2: One error resolution, but not all
3: Additional error detected
4: All errors resolved

1 42

3

Error state machine

15

CANopen and CANopen FD protocol

	 814016: CAN node recovered from bus-off (may
have missed some CAN data frames)

	 815016: CAN-ID collision (node has detected data
frames with CAN-IDs that are assigned to it)

It is recommended that the following CANopen
protocol error codes are also supported:

	 813016: Heartbeat error (one of the supervised
CANopen device has not sent its Heartbeat)

	 821016: PDO not processed due to length error
(PDO receiving CANopen device detected a mis-
match of the PDO length)

	 822016: PDO length exceeded (the mapped pro-
cess data is longer than 8 byte)

	 824016: Unexpected SYNC message length (SYNC
consumer expect another SYNC format with or
without SYNC counter)

	 825016: RPDO timeout (RPDO event timer
elapsed)

Value Description
00xx16 No error or reset
10xx16 Generic error
20xx16 Current
21xx16 Current, CANopen device input side
22xx16 Current inside the CANopen device
23xx16 Current, CANopen device output side
30xx16 Voltage
31xx16 Mains
32xx16 Voltage inside the CANopen device
33xx16 Output voltage
40xx16 Temperature
41xx16 Ambient temperature
42xx16 CANopen device temperature
50xx16 CANopen device hardware
60xx16 CANopen device software
61xx16 Internal software
62xx16 User software
63xx16 Data set
70xx16 Additional modules
80xx16 Monitoring
81xx16 Communication
82xx16 Protocol
90xx16 External
F0xx16 Additional functions
FFxx16 CANopen device specific

16-bit error code classes

PRE-DEFINED CONNECTION SET

The CANopen system designer must ensure that
unique CAN-IDs are assigned to each CANopen
device. In order to simplify this task, CANopen spec-
ifies a pre-defined connection set. This is a set of
default CAN-IDs assigned to the provided CANopen
application layer protocols. Therefore, the default
CAN-IDs have a 4-bit function code and a 7-bit
node-ID.

The CAN-IDs for the NMT message, the two default
Server SDO messages, and the Heartbeat message
are not configurable. This is to avoid losing nodes.
In other words, there is always the opportunity to
access the CANopen device depending on its node-
ID (default SDO channel) and observe it (Heartbeat).
All other CAN-IDs are a matter of configuration, in
particular those of the PDOs. The configuration is
done by means of the COB-ID parameters in the
related object dictionary entries. COB-ID parame-
ters are 32-bit values. The Bit 29 indicates if 11-bit
(default) or 29-bit CAN-IDs are used. The Bit 31 and
Bit 30 are used protocol-specific.

A unique node-ID still needs to be assigned by the
system designer. There are different options for set-
ting the node-ID. Common ones include DIP switch,
local I/O, and the Layer Setting Services as defined
in CiA 305. Alternatively, geographical addressing
by means of connectors with additional pins can be
used to assign a node-ID (e.g. pre-installed wiring
harnesses).

CANopen’s pre-defined connection set guarantees
that no CAN-ID is assigned to two nodes, if the
node-IDs are distributed uniquely. The correspond-
ing client SDOs, TIME publisher, and SYNC publisher
do not need to be implemented in one entity, they
could be in different nodes. The corresponding
EMCY consumers and RPDOs can be configured in
multiple nodes. The corresponding TPDOs shall be
provided by one entity, which could be in different
CANopen devices.

16

CANopen and CANopen FD protocol

For clarity: In many cases, the NMT master device
implements all corresponding client SDOs, the SYNC
and TIME producers. In a strict master/slave sys-
tem, the corresponding TPDOs and RPDOs are also
hosted in the NMT master device. Additionally, this
device consumes all Heartbeat and Boot-up mes-
sages.

Message Func.
code

Resulting CAN-ID
(depending on assigned ID)

Index/sub-index of
COB-ID parameter

NMT 00002 00016 (0) Not configurable
SYNC 00012 08016 (128) 1005 0016

EMCY 00012 08116 (129) to 0FF16 (255) 1014 0016

TIME 00102 10016 (256) 1012 0016

TPDO_1 00112 18116 (385) to 1FF16 (511) 1800 0116

RPDO_1 01002 20116 (513) to 27F16 (639) 1400 0116

TPDO_2 01012 28116 (641) to 2FF16 (767) 1801 0116

RPDO_2 01102 30116 (769) to 37F16 (895) 1401 0116

TPDO_3 01112 38116 (897) to 3FF16 (1023) 1802 0116

RPDO_3 10002 40116 (1025) to 47F16 (1151) 1402 0116

TPDO_4 10012 48116 (1153) to 4FF16 (1279) 1803 0116

RPDO_4 10012 50116 (1281) to 57F16 (1407) 1403 0116

TSDO_1 a 10112 58116 (1409) to 5FF16 (1535) Not configurable
RSDO_1 b 11002 60116 (1537) to 57F16 (1663) Not configurable
Boot-up/
Heartbeat

11102 70116 (1793) to 77F16 (1919) Not configurable

Pre-defined CAN-IDs for CANopen protocols
a = default server SDO message (server-to-client);
b = default server SDO message (client-to-server)

DEVICE AND SYSTEM CONFIGURATION

CANopen devices need to be configured or pro-
grammed. In many applications, the NMT master
device implements the corresponding SDO clients
to the default SDO servers. In a simple master/slave
system this NMT master device receives all PDOs
from the CANopen NMT slave devices and transmits
all PDOs to be received by the CANopen NMT slave
devices. No PDO cross communication is pre-de-
fined, except if the CANopen network is based on
a CANopen application profile. Besides the config-
uration of communication parameter, most of the
CANopen devices need to be configured, because

The CANopen DeviceDesigner is an easy-to-use tool for
fast and cost-saving design of CANopen devices.

they provide a default application function and
many options.

In general, there are two configuration strategies.
The system designer configures all CANopen devic-
es according to the system requirements and stores
the configuration in the non-volatile memory. This is
supported by means of the store configuration pa-
rameter (index 101016). It provides several options,
including which parameters are stored permanently.
Of course, there is also a restore parameter (index
101116), which allows resetting the CANopen device
back to factory settings. This configuration approach
can be performed with the support of external
tools, such as the "emotas CANopen DeviceDesign-
er".

The other configuration option is to configure all
connected CANopen slave devices whenever the
system is started. The advantage of this is that even
in case of a device substitution, the system works as
programmed. On the other hand, you depend on a
single entity, the NMT master device, which needs
to store the configurations of all CANopen NMT
slaves.

17

CANopen and CANopen FD protocol

DEVICE AND APPLICATION PROFILES

CiA device profiles specify the CANopen interface of
a specific class of devices. Most often implement-
ed is the CiA 401 profile for modular I/O devices.
Another profile is CiA 402, which specifies the
application behavior of frequency inverters as well
as servo- and stepper-motor controllers. It is inter-
nationally standardized in the IEC 61800-7 series.
These device profiles specify the process data, con-
figuration parameters, and the diagnostic informa-
tion as well as PDOs.

Number Name
CiA 401* Profile for I/O devices
CiA 402 * Profile for drives and motion control
CiA 404* Profile for measuring devices and closed-loop

controllers
CiA 406 Profile for encoders
CiA 408 Profile for fluid power technology, proportional

valves and hydrostatic transmissions
CiA 410 Profile for inclinometers
CiA 412* Profiles for medical devices
CiA 413* Profile for truck gateways
CiA 414* Profile for weaving machines
CiA 418 Profile for battery modules
CiA 419 Profile for battery chargers
CiA 442 Profile for IEC 61915-2 compatible motor starters
CiA 444* Profile for spreaders
CiA 445 Profile for RFID devices
CiA 446 Profile for AS-interface gateways
CiA 450 Profile for pumps
CiA 452 Profile for PLCopen motion control
CiA 453 Profile for power supply
CiA 456 Profile for configurable network components
CiA 457 Profile for wireless transmission media-based devices
CiA 458 Profile for energy measurements
CiA 459* Profile for on-board weighing devices
CiA 460 Profile for service robot controller
CiA 461* Profile for weighing devices
CiA 462 Profile for item detection devices

CiA device profiles

Number Name
CiA 415 Profile for sensor systems in road construction and

earth moving machines
CiA 416* Profile for building door control
CiA 417* Profile for lift control systems
CiA 420* Profile for extruder downstream devices
CiA 421* Profile for train control networks
CiA 422* Profile for municipal vehicles
CiA 423* Profiles for rail vehicle power drive systems
CiA 424* Profile for rail vehicle door control systems
CiA 425* Profile for medical diagnostic add-on modules (e.g.

injector)
CiA 426* Profile for rail vehicle exterior lighting control
CiA 430* Profile for rail vehicle auxiliary operating systems

CiA 433* Profile for rail vehicle interior lighting control
CiA 434* Profile for laboratory automation systems
CiA 436-1 Profile for construction machines
CiA 437* Profile for grid-based photovoltaic systems
CiA 443 Profile for SIIS level-2 (sub-sea) devices
CiA 447* Profile for special-purpose car add-on devices
CiA 454* Profile for energy management systems
CiA 455 Profile for drilling machines

CiA application profiles
* Multi-part specification

CiA application profiles specify the entire network.
A typical example is the CiA 417 application profile
for lift/elevator control systems. It describes all
functions as virtual devices. It is possible to imple-
ment multiple virtual devices in a single CANopen
device, but a virtual device cannot be distributed to
several CANopen devices.
In some cases, a set of device profiles achieves the
same as an application profile. A typical example is
the CiA 420 set of profiles for extruder downstream
devices. Application profiles provide an off-the-shelf
plug-and-play functionality for the default behav-
ior. Options need to be configured as in the device
profile approach.

18

CANOPEN FD APPLICATION
LAYER BASICS

The CANopen FD (Flexible Data-Rate) application
layer is specified in CiA 1301, which describes
the basic communication services and protocols
mapped to the CAN FD data link layer.

The specified communication services and the relat-
ed protocols (given in brackets) comprise:

	 Network management (NMT and Heartbeat)
	 Device configuration (USDO)
	 Real-time transmission of process data (PDO)
	 Node synchronization (SYNC and TIME)
	 Diagnostics (EMCY and USDO)

These protocols are mapped by default to CAN
data frames in FBFF (FD Base Frame Format). This
frame format uses the 11-bit CAN-ID and provides
a payload (data field) of up to 64 bytes. The use of
29-bit CAN-IDs is optional (FEFF). The extended pay-
load length compared with the Classical CAN data
frames in CBFF (Classical Base Frame Format) and
CEFF (Classical Extended Frame Format) is used to
improve the protocol functions, especially for USDO
and EMCY. Of course, the PDOs also benefit from
the longer data field and can now transport up to
64 bytes of process data.

CANopen FD requires the implementation of an
object dictionary. This is a list of all parameters
representing the CANopen FD device functionality,
including process data, configuration options, and
diagnostic information. This object dictionary is well
structured, and each parameter is addressable by
means of a 16-bit index and an 8-bit sub-index. This

24-bit address is used by some communication ser-
vices as a multiplexer to overcome the limitation of
the 2048 identifiers provided by the CAN data link
layer. This is so-to-say, a prolongation of the 11-bit
CAN-ID used by default for all CANopen protocols.
NOTE: The CANopen FD object dictionary is nearly
the same as the Classic CANopen object dictionary.
Just the error history is new.

CANopen FD basics

Object dictionary structure

The 16-bit index range is structured as follows:

000016 Reserved
000116 to 025F16 Data type parameters
026016 to 0FFF16 Reserved
100016 to 1FFF16 Communication parameters
200016 to 5FFF16 Manufacturer-specific parameters
600016 to 67FF16 Logic device 1 parameters
680016 to 6FFF16 Logic device 2 parameters
700016 to 77FF16 Logic device 3 parameters
780016 to 7FFF16 Logic device 4 parameters
800016 to 87FF16 Logic device 5 parameters
880016 to 8FFF16 Logic device 6 parameters
900016 to 97FF16 Logic device 7 parameters
980016 to 9FFF16 Logic device 8 parameters
A00016 to AFFF16 Network variables
B00016 to BFFF16 System variables
C00016 to FFFF16 Reserved

Each of these parameters can have up to 256
sub-parameters addressable by means of the 8-bit
sub-index. The 0016 sub-parameter is used to in-
dicate the highest implemented sub-parameter in
case of arrays (all sub-parameters are of the same
data type) or records (sub-parameters are of differ-

19

CANopen and CANopen FD protocol

CAN FD Controller area network with flexible data rate
CBFF Classical Base Frame Format
CEFF Classical Extended Frame Format
FBFF FD Base Frame Format
FEFF FD Extended Frame Format
ID Identifier
I/O Input/output
LSS Layer setting services
NMT Network management
PDO Process data object
SDO Service data object
USDO Universal service data object
SYNC Synchronization object
TIME Network time object

ent data types). Parameters specified as variables
support just the sub-parameter 0016.
The CANopen FD object dictionary supports up to
eight logical devices, meaning you can implement
multiple device profiles in a single CANopen FD
device. This could be a motion controller with eight
motor instances or a motion controller with addi-
tional I/O functionality.

List of abbreviations

CANOPEN FD AND THE OSI
REFERENCE MODEL

The Open System Interconnection (OSI) refer-
ence model from ISO specifies seven layers. The
CANopen FD application layer and communication
profile, as specified in CiA 1301, mainly covers net-
work, the transport, presentation, and the applica-
tion layers. The session layer is not used. The data
link layer complies with ISO 11898-1 and uses data
frames in FBFF (Classical Base Frame Format) by
default and optionally data frames in FEFF (Classi-
cal Extended Frame Format). Remote frames are
allowed, but not recommended at all.

CANopen uses the CAN physical layer as defined
in ISO 11898-1:2015 (physical signaling sub-layer)
and in ISO 11898-2:2016 (physical media access
sub-layer). This enables bit-rates up to 1 Mbit/s in

the arbitration phase, and up to 2 Mbit/s in the
data phase. In order to improve interoperability, CiA
1301 recommends a set of bit-rates.

If other bit-times are required, the CiA 601-3 rec-
ommendation should be consulted. It is recom-
mended to use daisy-chain or line topologies with
very short stubs. The Bus ends of the network cable
need to be terminated by resistors (nominally 120
Ohm each). The physical layer network design at bit-
rates above 1 Mbit/s requires additional attention.

The network length at a given bit-rate depends
not only on the configured sample, but also on the
cables used and non-terminated stubs. In 1-Mbit/s
networks you can achieve about 25 m. Using 500
kbit/s, network lengths of up to 125 m are possible.
In 250-m networks, bit-rates of up to 250 kbit/s can
be reached. Setting the bit-rate to 125 kbit/s allows
up to 500 m and at 50 kbit/s the maximum length is
1 km.

The network designer must assign unique CANopen
node-IDs to each connected CANopen device. Addi-
tionally, all CANopen nodes must use the very same
bit-timing settings in all nodes.

The CANopen profile specifications defining the
process data, configuration parameters, and the
diagnostic information are above the OSI reference
model. This also includes the mapping of process
data into PDOs.

CiA 302-7 specifies a network layer. The described
protocols allow the access of CANopen devices from
another CANopen network segment (remote SDO
services). This could be used to configure complex
CANopen system comprising several segments,
from a single point. Of course, this network layer
can be also used for diagnosis purposes (remote
EMCY services).

20

FIELD DEVICE WITH CANOPEN FD
COMMUNICATION INTERFACE

The CiA 1301 specification is more precise regarding
network and device modeling. The network system
model introduces the CiA device profile and the
CiA application profile approach. The device profile
specifies a single CANopen FD communication inter-
face. The application profile specifies all CANopen
FD communication interfaces in a network. These
interfaces are virtual, meaning that the one or mul-
tiple virtual devices can be implemented in a single
CANopen FD device.

CANopen and CANopen FD protocol

Application level User program(s)

Data level CiA 4XX: Device and application profiles

OSI layers

Application layer CiA 301: NMT, Heartbeat, SDO, PDO, SYNC, EMCY, TIME

Presentation layer CiA 301: Data types ans encoding rules

Session layer Not applicable

Transport layer CiA 301: Segmented SDO

Network layer (CiA 302-7: SDO and EMCY routing, PDO bridging)*

Data link layer ISO 11898-1

Physical layer ISO 11898-2, CiA 301 (bit-timing), CiA 303-1 (cable and connectors)

* Only necessary in multiple CANopen FD network architectures

Because CANopen FD integrates a network layer
to allow the addressing of CANopen FD devices in
other network segments, each CANopen FD devices
needs to be addressed by a network-ID plus a node-
ID.

The CANopen FD device model shown below
includes a CAN entity, which comprises the CAN
transceiver and the CAN protocol controller. The
CAN protocol controller is, in most cases, on-chip
in the micro-controller – sometimes named the
host controller. The CANopen FD protocol stack
implements the CANopen FD protocols and the

CANopen FD object dictio-
nary. And there is the profile
and application program
of the CANopen FD device,
which may comply with one
of the CANopen profiles
specified by CiA. Of course,
the CANopen FD device may
implement just manufactur-
er-specific profiles.

CAN entity CANopen FD
protocol entity

CANopen FD
object dic.

Transceiver and
CAN protocol
controller

NMT
Heartbeat
Server USDO
(Client USDO)
TPDO
RPDO
SYNC
EMCY
TIME

Communication
parameter

Process data

Configuration
parameter

Diagnostic data

Profiles and
application
program

CA
N

 b
us

 li
ne

I/
O

 li
ne

s

...

The CANopen FD device model

OSI reference model

21

CANopen and CANopen FD protocol

The CANopen FD device’s communication and ap-
plication parameters – accessible by means of the
object dictionary – are represented electronically in
the Electronic Data Sheet (EDS). The EDS provides
the parameter and sub-parameter attributes. This
includes index and sub-index, name, object code,
data type, category (or entry category), access,
PDO mapping, value range, and default value. EDS
are used to teach device and system configuration
tools the provided functionality. Such tools can also
be implemented in the host controller with NMT
master capability.

NETWORK MANAGEMENT (NMT)

CANopen FD network management is based on a
master/slave approach. The device with NMT mas-
ter functionality controls the NMT slave devices.
Each NMT slaves can be in one of three static states:

	 Pre-operational: All CANopen services can be
used, except PDO services,

	 Operational: All CANopen services can be used,
or

	 Stopped: No CANopen services can be used,
except NMT and Heartbeat

There are additional temporary states, which the
device transmits automatically after power-on and
after reset. The state diagram shown provides de-
tails of the possible state transitions. Those transi-
tions are commended by the NMT master or device
internally by the application.

The NMT commands from the NMT master devices
are confirmed on the application program level by
means of the Heartbeat message. The NMT com-
mand message is a two-byte message containing
the command in one byte and the addressed node-
ID in the other.
A node-ID of “0” indicates a broadcast command,
meaning that all nodes shall perform the command.
It is mapped to the CAN FD data frame with CAN-ID

“0”, which is the highest priority. The above-men-
tioned confirmation is a one-byte message provid-
ing the current state (pre-operational, operational,
or stopped) of the related NMT slave device. It is
mapped depending on the node-ID of the transmit-
ting device to a CAN FD data frame with a CAN-ID
of 80016 plus node-ID. The Heartbeat message is
sent periodically with the user-configurable heart-
beat-producer-time given in the object dictionary.

After power-on, the NMT slave transits automati-
cally into the NMT pre-operational state and waits
to be configured and started by the NMT master
device. It is also possible to configure an NMT slave
device to be self-starting. This is required in some
CANopen FD applications. There are two reset
commands: one simply resets the communication
parameters to the default or the configured values;
the other resets the communication and the profile
parameters. After the reset procedure, the NMT
slave device transitions automatically to the NMT
pre-operation state.

The NMT stopped state can be used to stop a device
communicating USDO and PDO messages. It just
accepts the NMT message and produces the Heart-
beat message. In some cases, it is desirable for the
CANopen FD device to not transmit any message.
To achieve this, the heartbeat-producer-time in the
object dictionary needs to be configured to “0”.

NMT slave state machine

Initialization

Power on

Pre-operational
(Configuration state)

Operational

Stopped

22

CANopen and CANopen FD protocol

HEARTBEAT SERVICES

CANopen FD network management uses the Heart-
beat message as the confirmation of the NMT com-
mand sent by the NMT master device. Additionally,
any CANopen FD device can use it to check the
availability of any other CANopen FD device. This is
necessary in all cases in which CANopen FD devices
transmit PDO messages only on state-of-change
events. The subscriber of such PDO messages could
not know if there is no event or if the device is no
longer available. The reception of the Heartbeat
message of the related device indicates that it is still
alive.

The transmission period is configurable by means
of the heartbeat-producer-time parameter in the
object dictionary of the transmitting device. The
indication that a device is missing can be configured
in any interested device, by means of the heart-

beat-consumer-time array. As a rule of thumb, the
consumer time should be twice that of the produc-
er time. The producer and consumer time configu-
rations are highly application specific.

In some applications, CANopen FD devices cross-
check each other by consuming the Heartbeat
messages. Sensors normally do not consume Heart-
beat messages; they just produce their PDO mes-
sages and their Heartbeat messages to respectively
indicate that they are still alive to confirm the NMT
command.

System designers are responsible for the configura-
tion of the Heartbeat timing. There could be appli-
cation-specific requirements that a device missing
an essential device stops the production of its own
Heartbeat message. The system designer should
take care that the overall system availability is still
sufficient.

The 1-byte Heartbeat message uses a CAN FD data
frame with the ID 70016 plus producer node-ID. The
one-byte content indicates the NMT status. This
means, the consumer can also detect that a device
has not sent PDO messages because of its NMT
state. This can be evaluated in the consumer’s appli-
cation program.

Heartbeat message content

The Heartbeat message is mapped to a single CAN
FD data frame with a 1-byte data field. This byte
provides the NMT status of the CANopen FD device.
It could be in pre-operational state (7F16), opera-
tional state (0516), or stopped state (0416). In the
pre-operational state, the CANopen FD device does
not process PDOs and in the stopped state it only
supports the NMT message and sends its Heart-
beat. In the operational state all CANopen functions
are provided.

Node state values:
0416 (Stopped), 0516 (Operational), 7F16 (Pre-operational)

Heartbeat protocol: When the configured heartbeat-consum-
er-time elapses, the application gets an indication and may stop
the production of its own Heartbeat message, because a missing
CANopen FD device could be critical for the functionality.

Node state

Heartbeat
Producer

Node state

Heartbeat
Consumer(s)

Indication(s)Request

Heartbeat
event

Request Indication(s)

DLC = 1

CAN-ID: 70016 +
node-ID

CAN-ID: 70016 +
node-ID

Heartbeat
producer time
(101716) in ms

Heartbeat
producer time
(101616) in ms

23

CANopen and CANopen FD protocol

If the CAN FD data frame contains 0016, it is inter-
preted as a Boot-up message indicating that this
CANopen FD device has just entered the network.
This happens after initial power-on, a power-cycle,
and after application and communication reset. The
next CAN FD data frame with the same CAN-ID and
content unequal 0016 is interpreted as Heartbeat
message. The NMT master device uses the Heart-
beat message as confirmation of its NMT com-
mands.

USDO SERVICES

CiA 1301 specifies several USDO services. The main
purpose of all these services is to read from and
write data to the CANopen FD object dictionary.
The USDO client always has the initiative sending
an USDO read or write request. In opposition to the
SDO communication in classic CANopen, the USDO
client provides the destination information in its
protocol. Therefore, the USDO protocols support
broadcast, multi-cast, and uni-cast addressing. This
means that all CANopen FD nodes can communi-
cate via USDO with each other CANopen FD node.
USDO services are intended for configuration and
diagnostic tasks. Of course, process data can be
transferred, as well.

CANopen FD distinguishes between USDO local
services and USDO remote services. The USDO
local services are used to communicate in the very
same network segment. This is indicated in the
USDO protocol by means of the network-ID. USDO
remote services are intended for communication
with CANopen FD devices in another segment with
another network-ID.

USDO services are always confirmed. Read requests
are confirmed by the USDO data received from
the USDO server. Write requests are confirmed by
means of USDO server segments indicating that the
data is stored in the CANopen FD object dictionary.
The USDO client needs to support an internal USDO

client-response timeout. The USDO client-response
timeout indicates the duration in which the USDO
client expects all responses to its request. The
USDO client does not consider responses that are
received after the timeout-time has elapsed.

There are specified USDO expedited and segment-
ed services. The expedited ones are mapped to
just one packet, because the payload can carry all
application data. The USDO segmented services are
mapped to multiple USDO protocol packets. They
are used to up- or download large amounts of data.
Each packet is confirmed, which consumes some
bandwidth. Therefore, CANopen FD specifies also
so-called USDO bulk services. In these services not
every packet is confirmed individually, but instead in
a group of packets.

If the USDO service cannot be handled correctly,
either the USDO server or the USDO client sends
an USDO abort message. The USDO abort message
provides a 4-byte abort code, giving the user infor-
mation about the reason.

USDO services provide pre-configured broad-,
multi-, and uni-cast communication, which unbur-
dens the system designer from assigning CAN-IDs.
This means that it is possible to run a network appli-
cation using only USDO services. Of course, Heart-
beat services and EMCY services are needed, too.

The current USDO service specification allows mul-
tiple SDO sessions. Therefore, the USDO protocol
contains a session-ID. The data type indication is
also new.

The next edition of CiA 1301 plans to support trans-
mitting multiple object dictionary entries by means
of one single USDO service. This could be used, for
example, for PDO mapping or communication pa-
rameters, or any other selection of multiple object
dictionary entries.

24

CANopen and CANopen FD protocol

USDO protocol examples

USDO messages have a protocol overhead of differ-
ent lengths depending on the related USDO service.
This overhead contains, for example, the kind of
service (command specifier) and the 24-bit address
of the object dictionary parameter to be written or
to be read (index and sub-index). The protocol de-
tails are specified in CiA 1301. The table shown pro-
vides the command specifiers of the defined USDO
protocols for local and remote network accesses.

In general, there are protocols for non-segmented
USDO messages. Those do not require more than
the 64-byte payload provided by the CAN FD data
link layer. If the USDO service needs more payload,
the CANopen FD protocol stack segments the data
to be transmitted, and then the CANopen FD proto-
col stack of the receiving nodes re-assemble them.

Code (local) Code (remote) Protocol name
01h 81h Download expedited request
02h 82h Download segmented initial request
03h 83h Download segmented intermediate

request (segment)
04h 84h Download segmented last request

(end)
05h 85h Reserved for future use by CiA
06h 86h Download bulk transfer initial

request
07h 87h Download bulk transfer segmented
08h 88h Download bulk transfer final
09h to 10h 89h to 90h Reserved for future use by CiA
11h 91h Upload request
12h 92h Reserved for future use by CiA
13h 93h Upload segmented intermediate

request (segment)
14h to 20h 94h to A0h Reserved for future use by CiA
21h A1h Download expedited response
22h A2h Download segmented initial

response
23h A3h Download segmented intermediate

response (segment)
24h A4h Download segmented last response

(end)
25h A5h Reserved for future use by CiA
26h A6h Download bulk transfer initial

response
27h A7h Reserved for compatibility reasons
28h A8h Download bulk transfer final

response
29h to 30h A9h to B0h Reserved for future use by CiA
31h B1h Upload expedited response
32h B2h Upload segmented initial response
33h B3h Upload segmented intermediate

response (segment)
34h B4h Upload segmented last response

(end)
35h to 7Eh B5h to FEh Reserved for future use by CiA
7Fh FFh USDO abort service

USDO command specifiers

USDO
client

USDO
server(s)

IndicationRequest

Confirmation Response

DLC = 6

CAN-ID: 60016 +
node-ID

CAN-ID: 58016 +
node-ID

USDO
response
time-out

DLC = 9 to 64

DA CS SID SI I

DA CS SID SI I DT S D

Not segmented local uni-cast USDO protocol sequence.

CS = command specifier; D = application data to be uploaded;
DA = destination address; DT = data type; I = index; SI = sub-index;
SID = session-ID

25

CANopen and CANopen FD protocol

USDO
client

USDO
consumers

IndicationsRequest

DLC = 12; CAN-ID: 60016 + node-ID

DA CS SID SI I DT r S

DA CS SID SI I t

DLC = 8; CAN-ID: 58016 + node-ID

IndicationsRequest

DLC = 64; CAN-ID: 60016 + node-ID

DA CS SID SI D

IndicationsRequest

DLC = 64; CAN-ID: 58016 + node-ID

DA CS SID SI D

IndicationsRequest

DLC = 5 to 64; CAN-ID: 60016 + node-ID

DA CS SID SI D

DA CS S

DLC = 3; CAN-ID: 58016 + node-ID

ResponseConfirmations

ResponseConfirmations

USDO local download bulk transfer broadcast protocol sequence.

CS = command specifier; D = application data segment to be downloaded;
DA = destination address; DT = data type; I = index; r = reserved;
S = total size of data to be downloaded; SI = sub-index; SID = session-ID;
t = time for processing segments

PDO SERVICES

In CANopen FD, the Process Data Object (PDO)
functionality is nearly the same as that used in
Classic CANopen. PDOs are used to transmit process
data, which could be for measured values, or com-
mands, most of which are time-critical. The PDO
service is not confirmed, it is a producer/consumer
service or in other words a publisher/subscriber
service.

PDO messages in CANopen FD contain up to 64
bytes of process data. They are mapped to a single
CAN FD data frame using a CAN-ID determined by
the COB-ID parameter given in the CANopen FD
object dictionary. This parameter is part of the PDO

communication parameter set. This parameter set
also comprises the transmission type, which indi-
cates the kind of transmission mode respectively
reception mode.

In general, CANopen FD allows the transmission of
PDOs asynchronously and synchronously. The trig-
gering of asynchronous PDOs depends on device-in-
ternal events. This can be the change of process
data transmitted in this PDO or the elapsing of the
event-timer – also part of the PDO communication
parameter set. The event-timer enables periodi-
cal transmission of the PDO. But bear in mind, the
event-timer is a local timer and not synchronized
with the other CANopen FD device in the network.

The synchronous transmission of PDOs is a unique
feature of the CANopen FD application layer. It is
based on the periodical transmission of the SYNC
message, which uses a single CAN data frame with
the default high-priority CAN-ID of 8016. The SYNC
message triggers the transmission of all synchro-
nous PDOs in the CANopen FD network. This
means, all sensors measure their values at the very
same moment. Depending on the internal delay and
the priority of the PDO message, these values are
transmitted one after the other, but all have been
measured simultaneously.

In order to synchronize “fast” and “slow” CANopen
FD devices, the synchronous TPDOs can be config-
ured to serve each, each second up to each 240th
SYNC message. But with mechanism you cannot
group synchronous PDOs. For this feature, you need
to use the SYNC message with a 1-byte counter.
Additionally, the SYNC start value (sub-index 0616)
needs to be configured. Now, you can start one
group of synchronous PDOs, for example, at the
SYNC counter value of 1 serving each second SYNC
message, and another group at the SYNC counter
value of 2 also serving each second SYNC message.
Of course, you can configure more complex behav-
ior to achieve a stable average busload.

26

ID value is a subscription of the corresponding
TPDO. It is possible that multiple or all CANopen
devices subscribe to the same TPDO (multi-cast
and broadcast communication)

	 PDO scheduling: Configuring the transmission
type sub-parameter of a TPDO determines the
sending behavior (e.g. change-of-state (CoS),
periodically, or synchronously). Configuring the
transmission type parameter of a RPDO deter-
mines the reception behavior (performing the re-
quired action immediately or with the reception
of the next SYNC message).

	 PDO mapping: Configuring the PDO mapping
parameter set determines which process data
are mapped into the TPDO or where to enter the
received process data (RPDO).

CANopen and CANopen FD protocol

In order to synchronize outputs in different devic-
es, the related RPDOs need to be configured as
synchronous. This means, the received commands
are not performed immediately, but when the next
SYNC message is received. At this time all devices
perform synchronized the requested actuation.

Another unique feature is the PDO inhibit time. This
configurable time circumvents the transmission of
the PDO for the configured period. This means, a
high-priority PDO cannot occupy the entire band-
width, and lower-prior PDOs can win bus-arbitra-
tion. With this feature you can design a predictable
transmission of Change-of-State (CoS) triggered
PDOs.

There is a second PDO parameter set spec-
ifying the content of the PDO message. It is
possible to map multiple process data into
one PDO message. Bit-wise mapping is sup-
ported, but not recommended. The related
PDO mapping parameter array in the object
dictionary provides the object dictionary ad-
dresses (16-bit index plus 8-bit sub-index),
where the process data value is stored (in
case of a Transmit-PDO) or should be stored
(in case of a Receive-PDO).

The PDO mapping parameters could be
different on the transmitting and the receiv-
ing side, the example shows a sensor device
transmitting two process data and a display
device with virtual gauges receiving the
PDO.
The system designer has several opportuni-
ties to optimize the PDO communication to
the application requirements:

	 PDO prioritization: Configuring the COB-
ID parameter with an appropriate CAN-ID
value changes the prior when accessing
the CAN network.

	 PDO linking: Configuring the COB-ID pa-
rameter of the RPDO to a dedicated CAN-

PDO

Index/sub-index Name Value
1A00 0116 1st application object 3001 00 2016

1A00 0216 2nd application object 3000 00 2016

3000 0016 Sensor A (UNSIGNED16) 23FF16

3001 0016 Sensor A (UNSIGNED16) 0200 000016

Index/sub-index Name Value
1603 0116 1st application object 3100 00 2016

1603 0216 2nd application object 3200 00 1016

:::

3100 0016 Gauge X (UNSIGNED16) 0200 000016

3200 0016 Gauge X (UNSIGNED16) 23FF16

0200 000016 23FF16

O
D

of
 re

ce
iv

in
g

no
de

O
D

of
 tr

an
sm

itti
ng

 n
od

e

The PDO mapping parameters on the transmitting and the receiving side
can differ, the example shows a sensor device transmitting two process
data and a display device with virtual gauges receiving the PDO.

27

CANopen and CANopen FD protocol

Transmission type values

The transmission type sub-parameter determines
the scheduling of TPDO. In the case of a synchro-
nous transmission, the TPDO can be configured to
serve each received SYNC message, each second,
etc. Remotely requested TPDO should not be used,
due to a completely specified behavior (the reaction
on CAN remote frames can be implemented differ-
ently, for example).

Value Description
0016 Acyclic synchronous: Triggered when the SYNC mes-

sage is received and one of the mapped process data
has changed its value after the last transmission.

0116 to F016 Cyclic synchronous: Triggered when the SYNC
message is received (0116), each second SYNC
message is received (0216), etc. This supports fast
and slow changing process data.

F116 to FB16 Reserved
FC16 Synchronous RTR only: not recommended anymore
FD16 Asynchronous RTR only: not recommended anymore
FE16 Asynchronous: Triggered by an internal event (e.g.

change-of-state of one of the mapped process data
or elapsing of the event-timer or any other event).
The device manufacturer specifies the internal event
triggering the TPDO transmission.

FF16 Asynchronous: As before, but the CiA profile specifies
the internal event triggering the TDPO transmission.

PDO communication parameter set

This parameter set is a record. The first sub-param-
eter (highest sub-index supported) indicates the
sub-parameter with highest number. The COB-ID
sub-parameter contains the CAN-ID to be used
and some additional protocol control bits. The

Sub-index Name Data type
0016 Highest sub-index sup. Unsigned8 (BYTE)

0116 COB-ID Unsigned32 (DWORD)

0216 Transmission type Unsigned8 (BYTE)

0316 Inhibit-time Unsigned16 (WORD)

0416 Reserved Not applicable

0516 Event timer Unsigned16 (WORD)

0616 SYNC start value Unsigned8 (BYTE)

PDO communication parameter set

EMCY SERVICE

The EMCY service provides information about the
error status of the CANopen device in respect to the
communication and the application. It is mapped
to a producer/consumer protocol. The producer
sends the EMCY message indicating some detected
“errors”.

The 20-byte message contains the same informa-
tion as the EMCY message of the Classic CANopen
application layer (Legacy EMCY): the one-byte error
register, the two-byte emergency error code, and
five bytes, which are CANopen profile-specific.
Some profiles allow using the five bytes for manu-
facturer-specific purposes.
In addition, the CANopen FD EMCY message pro-
vides the related logical device number, the related
CiA specification number, the status of the detected
error, and the time of the error occurrence (TIME-
OF-DAY). The type of error (status) indicates if the
error is recoverable or not. Warnings may also be
indicated.
The error register is a variable listed in the CANopen
object dictionary. It controls the Emergency state
machine. If any “error” is detected, the CANopen
device triggers the EMCY service and sends the
EMCY message. If further “errors” occur, the
CANopen device remains in the error state. Only if
all “errors” are recovered, will the CANopen device
transition into the error-free state. The error state

Transmission type values

transmission type sub-parameter determines the
triggering (TPDO) or reception (RPDO) behavior.
The inhibit-time sub-parameter provides the time
in milliseconds, before the TPDO is allowed to send
it again. The event timer sub-parameter specifies
the period in milliseconds of the TPDO transmission
respectively the time-out (missing) of a RPDO. The
SYNC start value sub-parameter indicates when the
synchronous TPDO is transmitted first. The value of
this sub-parameter needs to match with the value
given in the 1-byte SYNC message.

28

CANopen and CANopen FD protocol

behavior could be defined by CANopen profiles. In
the CiA 401 profile for modular I/O devices, the out-
puts are set to pre-defined values when the device
is in error state.

The system designer needs to configure the EMCY
message consumers depending on the applica-
tion requirements. This is achieved by means of
the emergency consumer parameter listed in the
CANopen object dictionary. This array parameter
contains all COB-IDs of EMCY messages, which
are consumed. NOTE: The COB-ID is a 32-bit value
providing the CAN-ID of the data frames to be con-
sumed as well as three control bits.

The reaction on the received EMCY messages is
highly application-specific. By default, the EMCY
message is transmitted in a single CAN FD data
frame with a high-priority CAN ID: 8016 plus node-
ID. The system designer assigns a unique node-ID
to the CANopen devices. The EMCY COB-ID param-
eter, which contains the CAN-ID to be used can be
configured by means of an SDO write service to the
CANopen object dictionary.

Structure of the EMCY protocol: New are the logical device number,
the CiA specification number, the status, and the time

Error
free

0

Error
occurred

KEY
0: No error detected
1: First error detected
2: One error resolution, but not all
3: Additional error detected
4: All errors resolved

1 42

3

Error state machine

Logical
device

number
Reserved

CiA
specification

number

Error
register EEC Device

specific Status Reserved Time

0 1 2 to 3 4 5 to 6 7 to 11 12 13 14 to 19

Legacy EMCY

Value Description
00xx16 No error or reset
10xx16 Generic error
20xx16 Current
21xx16 Current, CANopen FD device input side
22xx16 Current inside the CANopen FD device
23xx16 Current, CANopen FD device output side
30xx16 Voltage
31xx16 Mains
32xx16 Voltage inside the CANopen FD device
33xx16 Output voltage
40xx16 Temperature
41xx16 Ambient temperature
42xx16 CANopen FD device temperature
50xx16 CANopen FD device hardware
60xx16 CANopen FD device software
61xx16 Internal software
62xx16 User software
63xx16 Data set
70xx16 Additional modules
80xx16 Monitoring
81xx16 Communication
82xx16 Protocol
90xx16 External
F0xx16 Additional functions
FFxx16 CANopen FD device specific

16-bit error code classes

29

CANopen and CANopen FD protocol

Communication errors

CiA 1301 specifies some detailed communication
error codes. They are related to the CAN FD data
link layer protocol as well as to the CANopen FD
application layer protocols. The implementation of
the following error codes is recommended:

	 811016: CAN overrun (data frame lost)
	 812016: CAN protocol controller in error passive

mode (node cannot indicate bus errors, when it
is a receiver)

	 814016: CAN node recovered from bus-off (may
have missed some CAN data frames)

	 815016: CAN-ID collision (node has detected data
frames with CAN-IDs that are assigned to it)

Support of the following CANopen FD protocol error
codes is also recommended:

	 813016: Heartbeat error (one of the supervised
CANopen device has not sent its Heartbeat)

	 816016: USDO source client or source server
number collision (this indicates a double assign-
ment of node-IDs)

	 821016: PDO not processed due to length error
(PDO receiving CANopen device detected a mis-
match of the PDO length)

	 822016: PDO length exceeded (the mapped pro-
cess data is longer than 8 bytes)

	 823016: DAM MPDO nor processed, destination
element not available

	 824016: Unexpected SYNC message length (SYNC
consumer expect another SYNC format with or
without SYNC counter)

	 825016: RPDO timeout (RPDO event timer
elapsed)

	 8F0116 to 8F7F16: Heartbeat event caused by
node-ID 1 to node-ID 127

PRE-DEFINED CONNECTION SET

The CANopen FD system designer must assign
unique CAN-IDs to the CANopen FD devices. In
order to simplify this task, CANopen specifies a
pre-defined connection set. This is a set of default
CAN-IDs assigned to the provided CANopen FD
application layer protocols. Therefore, the default
CAN-IDs have a 4-bit function code and the 7-bit
node-ID.

Message Func.
code

Resulting CAN-ID
(depending on assigned ID)

Index/sub-index of
COB-ID parameter

NMT 00002 00016 (0) Not configurable
SYNC 00012 08016 (128) 1005 0016

EMCY 00012 08116 (129) to 0FF16 (255) 1014 0016

TIME 00102 10016 (256) 1012 0016

TPDO_1 00112 18116 (385) to 1FF16 (511) 1800 0116

RPDO_1 01002 20116 (513) to 27F16 (639) 1400 0116

TPDO_2 01012 28116 (641) to 2FF16 (767) 1801 0116

RPDO_2 01102 30116 (769) to 37F16 (895) 1401 0116

TPDO_3 01112 38116 (897) to 3FF16 (1023) 1802 0116

RPDO_3 10002 40116 (1025) to 47F16 (1151) 1402 0116

TPDO_4 10012 48116 (1153) to 4FF16 (1279) 1803 0116

RPDO_4 10012 50116 (1281) to 57F16 (1407) 1403 0116

TSDO_1 a 10112 58116 (1409) to 5FF16 (1535) Not configurable
RSDO_1 b 11002 60116 (1537) to 57F16 (1663) Not configurable
Boot-up/
Heartbeat

11102 70116 (1793) to 77F16 (1919) Not configurable

Pre-defined CAN-IDs for CANopen protocols
a = default server SDO message (server-to-client);
b = default server SDO message (client-to-server)

The CAN-IDs for the NMT message, the USDO client
and USDO server messages, and the Heartbeat
message are not configurable. This is to avoid losing
nodes. All other CAN-IDs are a matter of configura-
tion, in particular those of the PDOs. The configura-
tion is performed by means of the COB-ID parame-
ters in the related object dictionary entries. COB-ID
parameters are 32-bit values. The Bit 29 indicates if
11-bit (default) or 29-bit CAN-IDs are used. The Bit
31 and Bit 30 are protocol-specific.

30

CANopen and CANopen FD protocol

Of course, the node-ID still needs to be assigned
uniquely by the system designer. There are different
options to set the node-ID. Common are DIP switch,
local I/O, and the Layer Setting Services as defined
in CiA 1305 (under development). Alternatively,
geographical addressing by means of connectors
with additional pins can be used to assign a node-ID
(e.g. pre-installed wiring harnesses).

The CANopen FD pre-defined connection set guar-
antees that no CAN-ID is assigned to two nodes,
if the node-IDs are distributed uniquely. The TIME
publisher, and SYNC publisher do not need to be
implemented in one entity, they could be in differ-
ent nodes. The corresponding EMCY consumers and
RPDOs can be configured in multiple nodes. The RP-
DOs and corresponding TPDOs shall be provided by
just one entity, which could be in different CANopen
FD devices.

Each CANopen FD device implements an USDO
client as well as USDO servers for all other CANopen
FD devices in the network. This means, a full-
meshed USDO communication is pre-defined.

DEVICE AND SYSTEM CONFIGURATION

CANopen FD devices need to be configured or pro-
grammed. In a simple master/slave system this NMT
master device receives all PDOs from the CANopen
FD devices and transmits all PDOs to be received by
the CANopen FD devices. No PDO cross communi-
cation is pre-defined, except the CANopen network
is based on a CANopen application profile. Besides
the configuration of communication parameter,
most of the CANopen FD devices need to be con-
figured, because they provide a default application
function and many options.

In general, there are two configuration strategies.
The system designer configures all CANopen FD
devices according to the system requirements and

stores the configuration in the non-volatile memory.
This is supported by means of the store-configura-
tion parameter (index 101016). It provides several
options, including which parameters are stored
permanently. There is also a restore parameter
(index 101116), which allows the CANopen FD device
to be reset back to its factory settings. This config-
uration approach can be achieved with the support
of external tools.

The other configuration option is to configure all
connected CANopen FD devices whenever the
system is started. The advantage of this is the event
of a device substitution, the system works as pro-
grammed. On the other hand, you depend on a sin-
gle entity, the NMT master device, which needs to
store the configurations of all CANopen FD devices.

DEVICE AND APPLICATION PROFILES

CiA profiles can be used for Classic CANopen and
CANopen FD. Of course, if the larger PDO payload
of CANopen FD is used, additional PDO mapping
specification is required to achieve the same level
of interoperability as in Classic CANopen. The CiA
profiles will be updated step-by-step to standardize
the PDO mapping beyond the 8-byte limit.

The larger payload can also be used to provide ad-
ditional functional safety and cyber security proto-
cols. This would allow end-to-end protection, which
is not yet standardized by CiA.

31

CANopen and CANopen FD protocol

Number Name
CiA 401* Profile for I/O devices
CiA 402 * Profile for drives and motion control
CiA 404* Profile for measuring devices and closed-loop

controllers
CiA 406 Profile for encoders
CiA 408 Profile for fluid power technology, proportional

valves and hydrostatic transmissions
CiA 410 Profile for inclinometers
CiA 412* Profiles for medical devices
CiA 413* Profile for truck gateways
CiA 414* Profile for weaving machines
CiA 418 Profile for battery modules
CiA 419 Profile for battery chargers
CiA 442 Profile for IEC 61915-2 compatible motor starters
CiA 444* Profile for spreaders
CiA 445 Profile for RFID devices
CiA 446 Profile for AS-interface gateways
CiA 450 Profile for pumps
CiA 452 Profile for PLCopen motion control
CiA 453 Profile for power supply
CiA 456 Profile for configurable network components
CiA 457 Profile for wireless transmission media-based devices
CiA 458 Profile for energy measurements
CiA 459* Profile for on-board weighing devices
CiA 460 Profile for service robot controller
CiA 461* Profile for weighing devices
CiA 462 Profile for item detection devices

CiA device profiles

Number Name
CiA 415 Profile for sensor systems in road construction and

earth moving machines
CiA 416* Profile for building door control
CiA 417* Profile for lift control systems
CiA 420* Profile for extruder downstream devices
CiA 421* Profile for train control networks
CiA 422* Profile for municipal vehicles
CiA 423* Profiles for rail vehicle power drive systems
CiA 424* Profile for rail vehicle door control systems
CiA 425* Profile for medical diagnostic add-on modules (e.g.

injector)
CiA 426* Profile for rail vehicle exterior lighting control
CiA 430* Profile for rail vehicle auxiliary operating systems

CiA 433* Profile for rail vehicle interior lighting control
CiA 434* Profile for laboratory automation systems
CiA 436-1 Profile for construction machines
CiA 437* Profile for grid-based photovoltaic systems
CiA 443 Profile for SIIS level-2 (sub-sea) devices
CiA 447* Profile for special-purpose car add-on devices
CiA 454* Profile for energy management systems
CiA 455 Profile for drilling machines

CiA application profiles
* Multi-part specification

32

CANopen and CANopen FD protocol

32

Implementation of
CANopen and CANopen FD

MODULE BASED IMPLEMENTATION

Besides the implementation of CANopen by using
a protocol stack, also ready made modules can be
implemented on the micro-controller based target
system. For this, HMS offers the Anybus Compact-
Com module, which handles the entire CANopen
communication and enables fast and cost effective
implementation of a CANopen slave interface for
products which are sold in the lower or mid-range
volume area.
The Anybus CompactCom solution is available as
chip, brick or module, and thus adapts in the best
possible way to the respective requirements of the
application. Furthermore the multi-network ap-
proach of the Anybus CompactCom solutions makes
it easy to switch to other protocols just by changing
the module and by making minor adaptations at
the application. This makes the use of the module
extremely future-proof and flexible, as there is no
need to commit to a specific protocol.

PROTOCOL SOFTWARE BASED
IMPLEMENTATION

For the implementation of CANopen and CANopen
FD in embedded devices protocol stacks are can be
used, which are usually offered in form of company
or site licenses. In cooperation with emotas, HMS
offers comprehensively tested and ANSI-C compat-
ible CANopen and CANopen FD protocol stacks.
The stacks are available for "Slave", "Master/Slave"
or "Manager" devices and proven in many applica-
tions.

To connect the CANopen or CANopen FD stacks to
multiple CAN controllers and CPU types, a well-de-
fined driver interface is used. Using this driver
interface the stacks can also be easily adapted
to new CAN controllers or CPU types. The stacks
can be used stand-alone or with various real-time
Operating Systems, such as ThreadX, FreeRTOS, Keil
RTX or TI-RTOS as well as with Linux (SocketCAN,
can4linux), QNX or with real-time extensions for
Windows.

What does the implementation of a
CANopen stack involve?

The emotas protocol stacks are provided with com-
prehensive documentation and sample programs.
Project files are supplied with the sample programs
that allow direct integration into the corresponding
development environments of the compiler manu-
facturer.

The implementation is carried out as follows:

	 Adaptation to the hardware of the target plat-
form (Timer, Interrupt system)

	 Creation of object dictionary entries
	 Adaptation of configuration file
	 Compiling and testing

Early CANopen implementations on the target sys-
tem can be set up within a few days.

33
Discover more on www.hms-networks.com

CANopen and CANopen FD protocol

Develop or buy?

Time and again there are developers who consid-
er whether they should develop the CANopen or
CANopen FD protocol software themselves, be-
cause the specifications are freely available without
license costs and there are also several open-source
initiatives to date. This is certainly an interesting
development challenge, however, from an econom-
ic point of view, it is not at all worthwhile, as mature
CANopen and CANopen FD protocol software is
offered by several manufacturers at very attractive
prices.
For the development of a sufficiently tested and
documented protocol stack a development time of
at least 4 to 6 months is to be expected, even if the
full functional scope of the specifications is not im-
plemented. However, it remains to be seen whether
an "initial implementation" is already a sufficient-

ly optimized, fault-free product and whether the
"subtleties" of the not particularly straightforward
CANopen specification are correctly implemented.
The possible setting up of free or open implemen-
tations does little to change this fact. Most of these
approaches are only really of interest for training or
other non-commercial environments.

If we assume that an in-house development of a
CANopen protocol stack could be accomplished
within four man months, at an hourly rate of EUR
60, the costs for such a development would be
more than EUR 35.000. However, this is a very
optimistic estimation and a well-tested and reliable
solution supplied as source code off the shelf is
available for a fraction of this price. Therefore, an
in-house development of a CANopen protocol stack
is relatively pointless from an economic point of
view, including the time-to-market.

Anybus CompactCom Module
from HMS
	Ready made modules enable quick

implementation of CANopen
	Available as chip, brick or module for the

best possible adaptation to the customer
application

	Easy switch to other protocols with only
little effort, no need to commit to a
specific protocol

Protocol stacks
from emotas
	Highly flexible way for implementing

CANopen and CANopen FD
	Available for a variety of target systems

and easily adaptable to further systems
	For master, manager and slave

applications
	Continuously maintained
	Ideal for products which are soled

in high volumes

Analysis and configuration tools
from HMS and emotas
canAnalyser 3
	Analysis tool for CAN and CANopen
 	Ideal for device testing during

development and system stimulation
emotas DeviceDesigner and -Explorer
	Easy object dictionary creation based on

predefined, standardized profiles
	Provides master functionality to allow

analysis and configuration

33

CANopen

RUN ERR

Products from HMS for
implementing CANopen

